Tamara Kucherenko

«O» «F» B




Lesson Plan

@ Absolute and local maxima and minima

@ Finding local maxima and minima using the derivative
@ The closed interval method
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Absolute and Local Extrema

Definition
Let f(x) be a function on an interval I and let ¢ be a point in I. We say that

o f(c) is the absolute maximum of f(x) on I if f(c) > f(x) for all x in I.
o f(c) is the absolute minimum of f(x) on I if f(c) < f(x) for all z in I.

We refer to the maximum and minimum values as extreme values or extrema.

max=3
min=—2
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The Closed Interval Method
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Absolute and Local Extrema

Definition
We say that f(x) has a
@ Jocal maximum at x = c if f(c) > f(x) for all x in an open interval containing c.

@ Jocal minimum at x = c if f(¢) < f(x) for all x in an open interval containing c.

local max On [5,12]:

Absolute maximum is 4 at x=-5
Absolute minimum is -2 at =9

2 Local maximum is (3,3.5)

3 1
! Local minima are (-1,1) and (9,-2)

local and absolute min
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Finding Local Extrema Using the Derivative

Fermat’s Theorem

If f has a local maximum or minimum at ¢, and if f'(c) exists, then f'(c) = 0.
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Finding Local Extrema Using the Derivative

4
2
If f(x)=|z|, then f(0) =0is a
minimum value, but f’(0) does not exist.
—4 —2 2 4
-2

Definition

A number c in the domain of f is called a critical point if either f'(c) =0 or f'(c)
does not exist.
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Example 1

Find the critical numbers of f(z) ==

4

-3 — 22 -1,
fl(x) =42 —32* — 22 =0

r(42® -3z -2)=0 —

r=0o0rz=
There are three critical points:

3+£V9+4-4.2 3+£V41
. =

r=0,

8
_3+£V4
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Example 2

Find the critical numbers of f(z) =z

12

12 12 —
f(x) = 4x% - xga f/(x) = _x_g - §m% = 2 §x% = 28x
5 5 5% 5 5%

f! does not exist when x = 0.

f(x)=0 if 122 —8=0, that isng

There are two critical points: |z =0, x = =
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The Closed Interval Method

no max
min=—2

a4 o 7 x

min 1 T /
~_—— 1o

function is continuous on [-4,7] function is not continuous on [-4,7]

The Extreme Value Theorem
If f is continuous on a closed interval [a,b], then f attains its absolute maximum value

and its absolute minimum value at some numbers in [a, b].
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The Closed Interval Method

The Closed Interval Method

To find the absolute maximum and minimum values of a continuous function f on a
closed interval [a,b|:

Q Find the critical numbers of f in (a,b).

@ Compute the values of f at all the critical points in (a,b) and the endpoints.

© The largest of these values is the absolute maximum,
the smallest is the absolute minimum.
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Example 1
Find the absolute maximum and minimum values of the function
f(z) = 223 — 1522 + 242 4 7 on [0,6].

@ Find the critical numbers: f/(z) = 622 — 30z +24 = 6(x — 1)(x —4) =0
The critical numbers are x =1 and = = 4.

@ Compute the values of f at the critical points in (0,6) and the endpoints.
We compute f(x )at:pzl,w:4,w:0,w:6.
F(1) =2(1)% —15(1)% +24(1) + 7= 18

f(4) =2(4)% — 15(4)? +24(4) + 7= -9

f(0) = ()—15()+24(0)+7:7

f(6) =2(6)% — 15(6)% + 24(6) + 7 = 43

© Compare: The largest of these values is 43, so the ‘ absolute maximum is 43 |,
the smallest is -9, so the ‘ absolute minimum is — 9 ‘
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Example 2
Find the absolute rr;aximum and minimum values of the function
fz)=1—(x—1)3 on [-1,2].
. .. , 2 1 2
© Find the critical numbers: f'(z) = —-(r—-1)73 = ——
3 3(x —1)3

f'(x) is never zero, but f/(1) DNE. The critical number is x = 1.

@ Compute the values of f at the critical points in (—1,2) and the endpoints.
We compute f(z) atz =1, x = -1, x = 2.
f)=1-(1-1)3 =1
) =1-(-1-1)5 =1—(-2)s =1- Y(-2F=1- 1
F2)=1-(2-1)35=0

© Compare: The largest of these values is 1, so the ‘ absolute maximum is 1,
the smallest is 1 — /4, so the | absolute minimum is 1 — V/4 |
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Example 3
Find the abs%lute maximum and minimum values of the function
f@)= 5——=

© Find the critical numbers: f'(z) =

2 —z+1-2(22-1)
T
f'(xr) =0when 1 —22=0or x = £1.

_ 1—a?
(22 —x+1)2 B
Since 22 — 2 + 1 #0, the critical numbers are x = 1 and z = —1

(22 — x4 1)2
@ Compute the values of f at the critical points in (0,3) and the endpoints.
We compute f(x) atz =1, x =0, x = 3.
f) =

0
:1 =
12-141 » f(0)

=0
02-0+1 ’

3 3
PN=-—> 2
/) P -3+1 7
© Compare: The largest of these values is 1, so the [absolute maximum is 1],
the smallest is 0, so the ‘ absolute minimum is 0 ‘
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THE END
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